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Abstract We analyze a macroscopic model with a maximal density constraint which de-
scribes short range repulsion in biological systems. This system aims at modeling finite-size
particles which cannot overlap and repel each other when they are too close. The parts of the
fluid where the maximal density is reached behave like incompressible fluids while lower
density regions are compressible. This paper investigates the transition between the com-
pressible and incompressible regions. To capture this transition, we study a one-dimensional
Riemann problem and introduce a perturbation problem which regularizes the compressible-
incompressible transition. Specific difficulties related to the non-conservativity of the prob-
lem are discussed.
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1 Introduction

We consider a macroscopic model of self-driven particles which describes the dynamics of
a large number of social interactive agents. More specifically, we are interested in model-
ing short range repulsion effects due to the fact that finite-size agents (e.g. sheep in a herd)
cannot overlap (non-overlapping or steric constraints). To this aim, we derive a hyperbolic
problem with a density constraint as a limit of an unconstrained system with a repulsive
force which turns on suddenly when the density becomes close to the maximal one. The
limit model requires transmission conditions at the transition between an unclustered region
(where the maximal density is not reached) and a clustered region. In unclustered regions,
the fluid is compressible while it becomes incompressible in the clustered ones. Therefore,
this paper aims at providing a description of this transition between a compressible and an
incompressible fluid. Unfortunately, the formal perturbative approach which we implement
does not directly provide information about these transmission conditions. In order to re-
trieve this information, we rigorously analyze special solutions of the perturbation problem:
the Riemann problem. These solutions are explicitly known and allow us to carry out the
limit rigorously and to recover the required transmission conditions. We postulate that these
conditions, which are rigorously proven only for Riemann problem solutions, do extend to
all solutions. However, being non-rigorous for general solutions, these conditions are stated
as formal conditions in the “formal statement 1” below, which constitutes the main result of
the present paper. Still, the rigorous analysis of Riemann problem solutions is quite technical
and the proofs of many statements are deferred to appendices.

The modeling of biological systems undergoing flocking or herding dynamics has been
the subject of a vast literature. A first class of models relies on the alignment interaction
between neighboring self-propelled particles. The simplest of these models is an individual-
based (or microscopic) model proposed by Vicsek [25, 44]. A macroscopic version of the
Vicsek model is derived in [22] and a collisional Vicsek model is proposed in [8]. A variant
of the Vicsek model has been proposed by Cucker and Smale [17, 18] (see also [12, 26] for
recent mathematical results). By incorporating long-range attractive and short-range repul-
sive forces to the Vicsek model, one obtains the three zones model of Aoki [1, 16, 39],
originally devised to describe fish schools. Models with repulsive-attractive interaction
only (without alignment interaction) have been studied in [14, 19, 32]. Such models have
been used for pedestrian interactions [28, 34]. Other kinds of macroscopic models of drift-
diffusion type have been analyzed in [27, 31, 41, 43] and different hyperbolic models are
compared in [5]. For biological reviews, we can refer to [15, 33].

As outlined above, we focus here on the congestion constraint: animals or individuals
cannot overlap (steric constraint). As a consequence this congestion constraint leads to the
existence of a maximal density ρ∗, which cannot be exceeded inside the flock. This prob-
lem has been analyzed before and schematically two methods have been proposed. A first
one consists in modeling repulsion through forces or diffusion terms [14, 19, 31, 32, 43].
However, in this approach, the individuals are point particles and their finite size is not ex-
plicitly described. So the maximal density constraint is not explicitly taken into account. To
explicitly take this maximal density constraint into account, in [29, 30], the authors have de-
veloped an alternative approach: the particles are first evolved freely over one time step and
then projected towards the “closest” admissible non-overlapping configuration. This leads
to non-local interaction between the particles which contradicts the local character of the
interactions in most biological systems. By contrast, we developed a third route inspired by
multi-phase flows [10] and traffic jam modeling [6, 7]. The repulsive force is modeled by a
nonlinear pressure law p(ρ) which becomes singular as the density approaches the maximal
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density ρ∗. Additionally a small parameter ε allows to describe the fact that the regularized
pressure is very small of order ε as long as the density ρ is smaller than ρ∗ and turns on
suddenly to a finite or even large value when ρ becomes close to ρ∗. In the limit ε → 0 of
this model, two distinct phases appear: a pressureless compressible phase which describes
free motion in unclustered regions and an incompressible phase which describes the motion
inside the clusters. The major difficulty is to find the transmission conditions between the
compressible and incompressible phases.

The present paper is a multi-dimensional extension of the methodology presented in
[6, 7, 10] for multi-phase flows or traffic. However, an additional difficulty arises due to the
non-conservative character of the original hyperbolic model. Indeed, momentum is not a
conserved quantity because the particles in the underlying particle system are self-propelled
particles which have constant (in-time) and uniform (in-space) velocities. Therefore, the
model which is at the starting point of this paper is a non-conservative hyperbolic system
which as such presents an ambiguity in the definition of weak solutions. We will show that
this ambiguity can be partly removed for one-dimensional Riemann problem solutions. We
believe that the strategy developed in this paper to analyze congestion effects can apply to
other systems such as bacteria populations [35], economic systems like supply chains [2] or
physical systems like granular materials [4, 38].

The organization of this article is as follows. In Sect. 2, we present the perturbation model
and its limit. We also provide the connection conditions between the compressible and in-
compressible phases of the limit model, which are the main result of the paper. A remark on
collision of clusters is also formulated. With these informations, we show that the available
information is sufficient to provide a well-defined dynamics at least in the case of a single
cluster. Section 3 is devoted to the study of the one-dimensional Riemann problem for the
perturbed problem and the limits of its solutions as ε → 0. As stated above, this analysis
provides a strong support for (but not a proof of) the postulated transmission conditions
at the compressible-incompressible interface which are provided in Sect. 2. Appendix A
provides a formal derivation of the initial model from an individual based model with long-
range attractive and short-range repulsive interactions, which describes the aggregation of
gregarious animals like sheep. Appendices B to E provide proofs of technical lemmas and
theorems needed in the analysis of the Riemann problem.

2 Model and Goals

2.1 The Model and Its Rescaled Form

Our starting point is the following model, written in dimensionless form:

∂tρ + ∇x · (ρ�) = 0, (1)

∂t� + (� · ∇x)� + (Id − � ⊗ �)∇p(ρ) = 0, (2)

where ρ = ρ(x, t) is the particle density and � = �(x, t) is the particle velocity. The
problem is posed on the 2-dimensional plane x ∈ R

2 and t > 0 is the time. The velocity
�(x, t) ∈ R

2 is supposed to satisfy the normalization constraint

|�(x, t)| = 1, ∀x ∈ R
2, ∀t > 0.
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Therefore, �(x, t) ∈ S
1, the unit sphere, at any point in space-time. The function p(ρ) is

an increasing function such that p(ρ) ∼ ργ when ρ 	 1 and p(ρ) → +∞ when ρ → ρ∗
where ρ∗ is the so-called congestion density. In this paper, we will consider

p(ρ) = 1

( 1
ρ

− 1
ρ∗ )γ

, (3)

for simplicity but any other function with similar behavior would lead to similar results.
Note that a convenient choice of the density scale allows us to make the constant at the
numerator of (3) equal to one. The operators ∇x· and (� · ∇x) are defined, for a vector field
A = (A1,A2)(x), by

∇x · A = ∂x1A1 + ∂x2A2,

(� · ∇x)A = ((�1∂x1 + �2∂x1)A1, (�1∂x1 + �2∂x1)A2)
T ,

where T denotes the transpose operator. Finally, (Id − � ⊗ �) is the projection matrix onto
the line spanned by �⊥, where �⊥ is the vector � rotated by the angle π/2. Alternatively,
we have, for a vector A:

(Id − � ⊗ �)A = A − (� · A)A,

where (� · A) is the dot product � · A = �1A1 + �2A2.
We show in Appendix A that this model well describes the behavior of a system of

particles subjected to long-range attraction and short-range repulsion in the spirit of a model
proposed by Aoki [1] or Couzin et al. [16] for modeling gregariousness and swarming.
More precisely, in Appendix A, we derive this system from such a particle system through
successive changes of scales via mean-field and hydrodynamic theories. In the form (2), we
have dropped the force term describing long-range attraction. Indeed, this force term would
add the quantity (Id − � ⊗ �)ξa at the right-hand side of (2), with

ξa(x, t) =
∫

Ka(|y − x|)(y − x)ρ(y, t) dy
∫

Ka(|y − x|)ρ(y, t) dy
,

where Ka is a bounded positive kernel. This terms does not add any differential operator and
all the subsequent analysis will stay unaltered by adding this term.

Our main concern is the study of the congestion effects brought by the singularity of p(ρ)

near the congestion density ρ∗. Indeed, a herd of animals can be viewed, at large scales, as
a domain of space where the density ρ is close to the saturation density ρ∗. Therefore, the
geometrical domain occupied by the herd at time t can be identified to a set Ht = {x ∈
R

2 |ρ∗ − δρ < ρ(x, t) < ρ∗} where the parameter δρ > 0 must be suitably tuned. Therefore,
with the initial model (1), (2), the definition of a herd depends on an arbitrary parameter δρ,
which makes it ambiguous.

A way to unambiguously define the herd is to force the system (1)–(2) to make clear-cut
phase transitions from unclustered ρ < ρ∗ to clustered ρ = ρ∗ phases. In the spirit of the
works [6, 7, 21] for traffic, this can be achieved in an asymptotic regime which amounts
to supposing that there is merely no repulsive interactions at all as long as ρ < ρ∗, and
that repulsive “pressure” forces turn on suddenly when ρ hits the congestion density ρ∗.
This can be done by rescaling p(ρ) into εp(ρ) where ε 	 1 is a small parameter. In this
way, repulsive interactions are O(ε) as long as ρ < ρ∗, but become O(1) when ρ = ρ∗ (see
Fig. 1).
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Fig. 1 The “potential” for repulsive interaction p(ρ) (left) and εp(ρ) (right) after scaling by a small para-
meter ε = 10−2, with γ = 2 and ρ∗ = 1. From the right picture, it is clear that the repulsive interaction turns
on only when ρ is very close to ρ∗

Biologically, this assumption amounts to saying that the animals do not change their
directed motion by the presence of their neighbors unless they touch them and need to
modify their trajectory to bypass them. The parameter ε 	 1 is related to the time scale
at which this change of trajectory occurs and is therefore supposed small. Let us also note
that our model considers that all animals move with speed unity and never stop. Obviously
the model will require improvements by taking into account the fact that a certain fraction
of animals are steady, while foraging or resting.

Therefore, our main concern in this paper is the study of the following perturbation prob-
lem:

∂tρ
ε + ∇x · (ρε�ε) = 0, (4)

∂t�
ε + (�ε · ∇x)�

ε + ε(Id − �ε ⊗ �ε)∇xp(ρε) = 0, (5)

|�ε| = 1. (6)

We will be interested in the formal limit ε → 0. A rigorous theory of this type of problems
is unfortunately still out of reach up to our knowledge. In the following section, we show
that the limit ε → 0 leads to a phase transition between compressible and incompressible
regimes.

2.2 The Singular Limit ε → 0: Transition Between Compressible and Incompressible
Motion

As ε → 0, εp(ρε) becomes significant only where the convergence ρε → ρ∗ is fast enough.
Therefore, in the limit, either ρε → ρ < ρ∗ and εp(ρε) → 0 or ρε → ρ∗ and εp(ρε) → p̄

with p̄ possibly non zero. In other words, the equation (ρ∗ − ρ)p̄ = 0 holds in the limit. If
additionally p̄ < +∞, straightforward inspection shows that

ρ∗ − ρε = O(ε
1
γ ). (7)

Therefore, the formal limit ε → 0 of system (4)–(5)–(6) is given by the following system:

∂tρ + ∇x · (ρ�) = 0, (8)

∂t� + � · ∇x� + (Id − � ⊗ �)∇xp̄ = 0, (9)
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|�| = 1, (10)

(ρ∗ − ρ)p̄ = 0. (11)

In the non-congested domain ρ < ρ∗, the system reduces to a pressureless compressible gas
dynamics model with a speed constraint

∂tρ + ∇x · ρ� = 0,

∂t� + � · ∇x� = 0,

|�| = 1.

This system describes the behavior of the system outside the congested region. It is a com-
pressible system. Biologically, it describes the behavior of dispersed animals outside the
herd. Mathematical studies of this system are outside the scope of this article and the reader
can refer to [9] for standard pressureless gas dynamics models (without speed constraint).
We note that this system exhibits vacuum regions where ρ = 0 as it will be seen below.

2.3 Study of the Congested Region

The congested part of the flow is defined as the region where the congestion constraint
ρ = ρ∗ is reached. Biologically, it defines the domain of space occupied by the herd. Its
connected components will be called “clusters”. In the congested domain, system (8)–(11)
turns into an incompressible Euler model with speed constraint:

∇x · � = 0, (12)

∂t� + � · ∇x� + (Id − � ⊗ �)∇xp̄ = 0, (13)

|�| = 1, (14)

ρ = ρ∗. (15)

We first note that smooth incompressible vector fields of constant norm in R
2 have a very

special structure which is outlined in the following.

Proposition 1 Let �(x) be a smooth vector field on a domain 
 ⊆ R
2 with values in S

1 and
which satisfies the incompressibility constraint ∇x ·� = 0. Then the integral lines of �⊥ are
straight lines and � is constant along these lines (where �⊥ is rotated by an angle of π/2)
and the integral lines of � are parallel curves to each other.

The proof of this proposition simply results from introducing the angle θ so that �(x, t) =
(cos(θ(x, t)), sin(θ(x, t))) and noting that θ satisfies the “transport equation”

∂x2θ − (tan θ)∂x1θ = 0.

This property implies that the knowledge of � on the cluster boundaries suffices to know �

everywhere inside the clusters.
The integral curves of � provide a mathematical description of the animal files in the

herd. These curves being parallel to each other, they are consistent with the intuition and the
observation of animal files in a herd (see Fig. 2).
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Fig. 2 Left: schematic figure of a congested zone, where the arrows design the vectors �. Right: picture of a
sheep herd

The pressure p̄ satisfies an elliptic equation. Indeed, by taking the divergence of (13) and
after easy computations, we get

∇x · ((Id − � ⊗ �)∇xp̄) = Tr((∇x�)(∇x�)T ), (16)

where Tr is the trace of a matrix and the exponent T denotes the transpose operator. This
equation can be equivalently written:

−(�⊥ · ∇x)
2p̄ − (∇x · �⊥)(�⊥ · ∇x)p̄ = −Tr((∇x�)(∇x�)T ), (17)

and only involves the operator (�⊥ · ∇x) applied to p̄. Since the integral lines of �⊥ are
straight lines, (17) is just a one-dimensional elliptic problem for p̄ posed on this straight
line. Knowing the boundary values of p̄ where this straight line meets the boundary of the
cluster allows to compute p̄ everywhere on this lines and consequently inside the cluster
(see Fig. 2). Hence, once � is known inside the cluster, the resolution of this equation only
requires the knowledge of the boundary conditions for p̄ at the boundaries of the cluster.

To close the system, i.e. to determine how the solution in the congested domain evolves,
we need to determine these boundary conditions. They are not given by the formal limit and,
in order to determine them, we need to explore another route. For this purpose we look at
the solutions of the Riemann problem for the perturbed and limit systems. Note that if we
abandon the constraint of constant norm |�| = 1, the non conservative term (� ⊗ �)∇xp̄ in
the momentum conservation equation (9) drops out, and we recover a conservative model
expressing mass and momentum equation. Then, the Rankine-Hugoniot conditions across
the boundary between the compressible and incompressible regions provide the boundary
conditions for the pressure at the cluster boundary. The constant norm constraint prevents
from using this strategy. Therefore, we need to find a different route to specify these bound-
ary conditions.

2.4 Conditions at the Boundary of the Clusters

To find the boundary conditions on the cluster boundaries, we need to extract more infor-
mation from the perturbation system (4)–(6) than the mere limit system (8)–(11). As such,
this system is underdetermined. The strategy is to extract such information by passing to the
limit ε → 0 in some special solutions of this system. To underline the difficulty resulting
from the non-conservativity, let us first look at the Rankine-Hugoniot conditions. We have
the following proposition.



92 P. Degond et al.

Fig. 3 Notations at the interface

Proposition 2

1. If ρ and � are smooth on both sides of a discontinuity curve �(t) parametrically defined
by x = xc(s, t) where s ∈ R is the curvilinear abscissa along �(t), then we have

[ρ(� · n − σ)]� = 0,

where n = (∂xc/∂s)⊥ is the unit normal to �(t) at xc(s, t) and σ = (∂xc/∂t) · n is the
geometric speed of the discontinuity �(t) at xc(s, t).

2. If � is smooth (i.e. C 1) across � and ρ is smooth on both sides of �, then we have

[p̄]�(� · τ) = 0,

where τ = ∂xc/∂s is a unit tangent vector to �(t).

The proof of this proposition is omitted. The second relation provides us information when
the mean velocity is not tangent to the cluster. In this condition, if the mean velocity is
continuous, the pressure is also continuous. This implies that the pressure is zero on a cluster
boundary if the mean velocity is continuous. This fact will be supported by the forthcoming
analysis. However, as regards the interface dynamics, such an analysis is incomplete because
the second equation supposes that � is continuous.

So as to capture the correct boundary conditions for the pressure p̄ and the velocity �

at a cluster boundary where ρ and � may be discontinuous, we consider a one dimensional
problem in the normal direction n to this boundary (cf. Fig. 3). In order to justify this sim-
plification, we introduce the coordinate system (x1, x2) in the normal and tangent direction
to the boundary. The angle θ is defined so that �(x, t) = (cos(θ(x, t)), sin(θ(x, t))) in this
basis. System (4)–(5) then becomes (the index ε is omitted):

∂tρ + ∂x1(ρ cos θ) + ∂x2(ρ sin θ) = 0, (18)

[∂tθ + (cos θ∂x1θ + sin θ∂x2θ) + (− sin θ∂x1εp(ρ) + cos θ∂x2εp(ρ))]
(− sin θ

cos θ

)

= 0. (19)

We suppose that all quantities have locally smooth variations in the direction tangent to the
boundary and we focus on the possible sharp variations or discontinuities in the normal di-
rection. To analyze this situation, we perform a coordinate dilation in the x1 direction and in
time: x ′

1 = δx1, x ′
2 = δx2, t ′ = δt , with δ 	 1. In these new variables, all x1 and t derivatives

are multiplied by 1/δ. Letting δ → 0, we are led to the following one-dimensional system
with x1 = x:
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∂tρ + ∂x(ρ cos θ) = 0, (20)

∂tθ + cos θ∂xθ + ε sin2 θ∂xεp(ρ) = 0. (21)

Hyperbolic systems like (20)–(21) have analytical solutions which are those of the Riemann
problem. These solutions are associated to initial conditions which consist of a discontinuity
between two constant states. We will construct the solutions of the Riemann problem for
system (20)–(21) and analyze their limits as ε → 0. This analysis will give rise to jump
conditions at the cluster boundaries for these solutions. We will then postulate that these
jump conditions are generic and valid for all solutions of the limit problem (8)–(11).

As underlined above, the non-conservative form of system (20)–(21) induces a lack of
information about the jump conditions across a boundary. In order to waive the ambiguity,
we have to make further assumptions. One of them is to consider the following conservative
system as a way to select discontinuities

∂tρ + ∂x(ρ cos θ) = 0, (22)

∂t�(cos(θ)) + ∂x(�(cos θ) + εp(ρ)) = 0, (23)

where �(cos θ) = − ln |tan(θ/2)| and �(cos θ) = − ln |sin θ |. It is one of the simplest con-
servation forms that system (20)–(21) can take. It is obtained by dividing (21) by sin2 θ . The
functions � and � satisfy:

d

dθ
(�(cos θ)) = 1

sin2 θ
,

d

dθ
(�(cos θ)) = cos θ

sin2 θ
.

Other conservative forms of (20)–(21) do exist (see Appendix B) but we consider this form
because it is a simple one. Note that this conservative form is not equivalent to the origi-
nal form (20)–(21) because �(cos θ) is an even function of θ . Hence it does not provide
information on the sign of θ . However, this information will easily be recovered at the end.
We remind that, if all conservative forms are equivalent for smooth solutions, they differ for
weak solutions. Therefore, the choice of a particular conservative form must be made on
physical considerations. Such physical considerations are not available here. In front of this
lack of information, the choice of one of the most simple of these conservative forms seems
to be the most natural one.

Classical hyperbolic system theory will enable us to solve the Riemann problem for (22)–
(23) and to take the limit ε → 0 of these solutions. The limit solutions will satisfy some jump
relations which we will assume generic of all solutions of the limit problem (8)–(11). We
now present the result of this analysis for such generic solutions. We call “unclustered”
region (UC) the domains where 0 < ρ < ρ∗, by contrast to vacuum (V) where ρ = 0 or
clusters (C) where ρ = ρ∗.

Formal Statement 1 The boundary conditions at cluster boundaries or vacuum boundaries
of system (8)–(11) are as follows:

– Interface (C)-(UC). The pressure jump is given by

[p̄] = [�(cos θ)] [ρ cos θ ]

[ρ]
− [�(cos θ)] , (24)

and the shock speed is given by the Rankine-Hugoniot relation

σ = [ρ cos(θ)]/[ρ], (25)
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Fig. 4 Interfaces

where the angle brackets denote the jumps across the interface. We note that pUC = 0 and
that specifying [p̄] actually specifies the boundary value of p̄ at the cluster boundary.

– Interface (UC)-(V). The interface speed σ is equal to the fluid normal speed σ = cos θ =
� · n at the boundary of the (UC) region

σ = (cos θ)UC, (26)

and the pressure p̄ is identically zero.
– Interface (C)-(V). The interface speed is equal to the normal speed cos θ = � · n at the

cluster boundary and the boundary value of p̄ is zero

σ = (cos θ)C, p̄C = 0. (27)

– Interface (UC)-(UC). This is a contact discontinuity between two regions of different ρ.
The normal velocity is continuous and equal to the speed of the discontinuity

[cos θ ] = 0, σ = cos θ, (28)

and the pressure is identically zero.

We note that all these statements are consistent with Proposition 2. Section 3 provides the
detailed analysis which leads to these relations. The dynamics of the interface between two
clusters (C)-(C) does not follow from the analysis of the Riemann problem. We provide a
separate analysis of it by introducing the so-called cluster dynamics.

We note that (C)-(UC) interfaces or contact discontinuities (UC)-(UC) may incorporate
a flip of the sign of θ in the velocity jump. This has no influence on the boundary values of
p̄ at the cluster boundary which is the quantity we wish to determine by this analysis. The
Formal Statement 1 is illustrated in Fig. 4.
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2.5 Clusters Dynamics

We now focus on the interface (C)-(C), i.e. a collision of two clusters. The procedure using
limits ε → 0 of the Riemann problem does not lead to any conclusion since the pressure
becomes infinite. Note that this is also the case when dealing with the same limit in the
standard Euler problem. Therefore, we have to find another strategy than using the Riemann
problem. We turn our attention to the collision between two clusters of finite size and we
show that the pressure involves a Dirac delta at the time of the collision. Such an analysis is
inspired by the sticky block solutions presented in [10].

Consider two one-dimensional clusters which collide at a time tc (see Fig. 5). Before
collision, the left (resp. right) cluster at time t < tc extends between a�(t) and b�(t) (resp.
ar(t) and br(t)) and moves with speed

cos θ� = a′
�(t) = b′

�(t) (resp. cos θr = a′
r (t) = b′

r (t)).

After the collision, the two clusters aggregate and form a new cluster at time t > tc extending
between a(t) and b(t) and moving with speed cos θ = a′(t) = b′(t). Therefore, ρ and θ are
given for t < tc by

ρ = ρ∗1[a�(t),b�(t)] + ρ∗1[ar (t),br (t)], θ = θ�1[a�(t),b�(t)] + θr1[ar (t),br (t)],

and for t > tc by

ρ = ρ∗1[a(t),b(t)], θ = θ1[a(t),b(t)].

where 1I denotes the indicator function of the interval I (i.e. 1I (x) = 1 if x ∈ I and 0
otherwise). We denote by m = b�(tc) = ar(tc) the collision point. We look for a pressure
written as p̄(x, t) = π(x)δ(t − tc). The following proposition provides conditions for such
type of solutions to exist.

Proposition 3

1. Supposing that p̄(x, t) = π(x)δ(t − tc) where π is continuous and zero outside the clus-
ters, then θ and π satisfy

(�(cos θ) − �(cos θ�))(m − a(tc)) + (�(cos θ) − �(cos θr))(b(tc) − m) = 0, (29)

π(x) =
⎧
⎨

⎩

(�(cos θ) − �(cos θ�))(m − x)

+(�(cos θ) − �(cos θr))(b(tc) − m), if x ∈ [a(tc),m],
(�(cos θ) − �(cos θr))(b(tc) − x), if x ∈ [m,b(tc)].

(30)

2. Under conditions (29)–(30), (ρ, θ,p) is a solution (in the distributional sense) of (22)–
(23).

The proof of this proposition is developed in Appendix C.

2.6 Conclusion of the Analysis

The underdetermined problem (8)–(11) must be complemented with the Formal Statement 1
which determines the boundary values of p̄ at cluster boundaries and by Proposition 3 which
determines the evolution of two clusters when they meet. Strictly speaking, Proposition 3
only gives the collision dynamics of two clusters in dimension 1. In dimension 2, clusters
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Fig. 5 Collision of clusters. In the filled domain: clusters (ρ = ρ∗)

may have complicated shapes. So, the collision dynamics of two clusters in dimension 2 is a
complicated problem which will be examined in a future work. At the present stage, problem
(8)–(11) complemented with statement 1 fully determines the dynamics of the limit system
as long as two clusters do not meet.

A rigorous theory of the well-posedness of system (8)–(11) complemented with state-
ment 1 is outside the scope of the present paper. Let us just mention how a time discretized
version of the problem can be computed. Suppose that ρn(x), �n(x), p̄n(x) are approxima-
tions of ρ(x, tn), �(x, tn), p̄(x, tn) at time tn = n�t . We solve the implicit system

ρn+1 − ρn

�t
+ ∇x · (ρn+1�n+1) = 0,

�n+1 − �n

�t
+ (�n · ∇x)�

n+ 1
2 + (Id − �n+ 1

2 ⊗ �n+ 1
2 )∇xp̄

n+1 = 0,

with

�n+ 1
2 = �n + �n+1

|�n + �n+1| .

This form guarantees that |�n+1|2 = |�n|2 = 1 (by taking the dot product by �n+ 1
2 and

using that |�n+ 1
2 | = 1). p̄n+1 is determined by solving the elliptic equation

−∇x · ((Id − �n+ 1
2 ⊗ �n+ 1

2 )∇xp̄
n+1) = ∇x · ((�n · ∇x)�

n+ 1
2 ),

on every connected component of the cluster region defined at time t by
{x ∈ R

2 | ρn+1(x, t) = ρ∗}. This equation must be supplemented with suitable boundary
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conditions on p̄ at the boundary of the cluster. These boundary conditions are actually given
by Formal Statement 1, with right-hand sides evaluated at time tn+1. The resolution of this
equation guarantees that ∇ ·�n+1 = 0 on every connected component of a cluster, and shows
that ρn+1 = ρn = ρ∗ on such a cluster. Of course, the implicitness of the discretization leads
to a nonlinear stationary problem, and the question of the existence of solutions for such
a problem is not clear. However, intuitively, it seems that the prescription of the boundary
values of p̄ at cluster boundaries through Formal Statement 1 leads to a well-posed problem,
at least as long as two clusters do not meet.

3 The One-dimensional Riemann Problem

3.1 Methodology

To find out jump relations satisfied by the solutions of the system (8)–(11), the strategy is
to solve the Riemann problem of the one-dimensional perturbation system (22)–(23) and to
take the limit ε → 0 of its solutions. This strategy was successfully adopted for a model of
traffic jams in [6].

We note that the eigenvalues and eigenvectors of the hyperbolic system (22)–(23) are

λε
±(ρ, θ) = cos θ ± √

εp′(ρ)ρ| sin θ |, rε
±(ρ, θ) =

( ±ρ| sin θ |√
εp′(ρ)ρ

)

.

In this conservative system, the domain of θ is restricted to the interval ]0,π[. But this is
not a problem since our main concern is to find the missing conditions on p̄ at the cluster
boundary, and these only depend on jump conditions as functions of cos θ .

3.2 Solutions to the Riemann Problem for (22)–(23)

3.2.1 Genuinely Nonlinear Fields

The Lax theorem provides the local entropic solutions of the Riemann problem provided that
all the fields are totally genuinely nonlinear (∇λε± · rε± �= 0) or totally linearly degenerate
(∇λε± · rε± = 0). Unfortunately, the following result implies that the fields are genuinely
nonlinear except on a one-dimensional manifold.

Proposition 4

1. The linearly degenerate set (∇λε± · rε± = 0) consists of two curves Cε± (each of them cor-
responds to one characteristic field):

Cε
± = {

(ρ, θ) , ρ ∈ [0, ρ∗[, cotan θ = ∓Gε(ρ)
}
,

where

Gε(ρ) := 1√
ε

(p′′(ρ)ρ + 3p′(ρ))ρ

(p′(ρ)ρ)3/2
∼

ρ→ρ∗ C
(ρ∗ − ρ)

γ−1
2√

ε
.

2. For γ = 1, the linearly degenerate set tends to the straight lines {θ = 0} and {θ = π}
as ε tends to 0. For γ > 1, Cε+ (resp. Cε−) is a one to one, onto mapping from [0, ρ∗] to
[π/2,π] (resp. [0,π/2]) for all ε, called θε

ld,±(ρ). For a fixed θ ∈]0,2π[, the inverse map

ρε
ld,±(θ) satisfies: ρ∗ − ρε

ld,±(θ) = O(ε
1

γ−1 ).
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The proof of this proposition is easy and is omitted. Thus, the Lax theorem is valid at least
locally in the neighborhood of all the states except those which are on the one-dimensional
manifolds. The second part of the previous proposition shows that all the states have locally
genuinely nonlinear fields as ε tends to 0. Indeed, even if the state converges to a congested
state as ε → 0, its convergence is like O(ε1/γ ) (cf. (7)), which is slower than the convergence
of the linearly degenerate field when γ > 1. Therefore, there exists ε′ such that for all ε < ε′

the fields of the converging state are genuinely non-linear. It is also trivially the case when
γ equals 1. According to standard non-linear conservation theory [40] (for ε small enough),
the solutions of the Riemann problem consist of two simple waves (shock waves and/or
rarefaction waves) of the first and second characteristic fields, separated by constant states.

3.2.2 Shock and Rarefaction Waves

A shock wave between two constant states (ρ�, θ�) and (ρr , θr ) traveling with a constant
speed σ satisfies the Rankine-Hugoniot relations:

[ρ cos(θ)] = σ [ρ] , (31)

[�(cos(θ)) + εp(ρ)] = σ [�(cos(θ))] , (32)

where [f ] := fr − f� denotes the difference between the right value and the left value of
any quantity f . By eliminating σ in these equations, we get a non-linear relation between
the left and right states:

Hε(ρ�, θ�, ρr , θr ) := [�(cos(θ)) + εp(ρ)] [ρ] − [�(cos(θ))] [ρ cos(θ)] = 0. (33)

With a fixed left state, the zero set of Hε is called the Hugoniot locus and represents all the
admissible right states, connected to this left state by a shock wave.

Proposition 5 The Hugoniot locus consists of two Hugoniot curves Hε± associated to the
two characteristic fields.

1. The Hugoniot curve Hε− associated to λε− (resp. Hε+ to λε+) is strictly increasing
(resp. strictly decreasing) in the (ρ, θ)-plane. Let hε− : ](hε−)−1(0),π[→ [0, ρ∗[ and
hε+ : ]0, (hε+)−1(0)[→ [0, ρ∗[ be the Hugoniot curves as functions of θ on their domains
of definition.

2. The Hugoniot locus tends to the union of the straight lines {θ = θ�} and {ρ = ρ∗}.

The proof of this proposition is developed in Appendix D.
A rarefaction wave is a continuous self-similar solution (ρ( x

t
), θ( x

t
)). It satisfies the

differential equation

(
ρ ′(s)
η′(s)

)

= rε±(ρ(s), η(s))

∇λε±(ρ(s), η(s)) · rε±(ρ(s), η(s))
,

where η = �(cos(θ)) is the conservative unknown. Therefore, (ρ, η) belong to the integral
curve of rε±. By changing the parametrization of the integral curve, we obtain

ρ ′ = ±ρ| sin θ |, θ ′ = −√
εp′(ρ)ρ| sin θ |,
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and then the following integral equation

θ − θ� = ∓
∫ ρ

ρ�

√
εp′(u)

u
du. (34)

It defines two integral curves Oε± issued from the state (ρ�, θ�). The following proposition
summarizes their main properties.

Proposition 6

1. The integral curve Oε− of rε− (resp. Oε+ of rε+) is strictly increasing (resp. strictly
decreasing) in the (ρ, θ)-plane. Let iε− : ](iε−)−1(0),π[→ [0, ρ∗[ and iε+ : ]0, (iε+)−1

(0)[→ [0, ρ∗[ the rarefaction curves as functions of θ on their domains of definition.
2. For all γ ≥ 1, the rarefaction curves tend to the union of the straight lines {θ = θ�}

and {ρ = ρ∗}. Moreover, for θ ∈]θ�,π [ (resp. θ ∈]0, θ�[), ρ∗ − iε−(θ) = O(ε
1

γ−1 ) (resp.

ρ∗ − iε+(θ) = O(ε
1

γ−1 )).
3. Suppose that the state ρε

� is such that ρε
� → ρ∗ and εp(ρε

� ) → p̄�. For all ρ < ρε
� ,

(iε±)−1(ρ) satisfies:

∣
∣
(
iε
±
)−1

(ρ) − θr

∣
∣ ≤ ∣

∣
(
iε
±
)−1

(0) − θr

∣
∣ = O(ε

1
2γ ).

The proof is developed in Appendix E.

Entropy Conditions In order to satisfy the Lax entropy condition, each Hugoniot curve
Hε± is restricted to right states which have a smaller associated eigenvalue than the left state.

Proposition 7 The eigenvalue λε− (resp. λε+) is a decreasing function of ρ on the Hugoniot
curve Hε− (resp. an increasing function of ρ on Hε+) for θ < cotan−1(−1/

√
εp′(ρ)ρ) (resp.

θ > cotan−1(1/
√

εp′(ρ)ρ)).

Proof Let g : ρ ∈ [0, ρ∗] → g(ρ) ∈ [0,π ] be an arbitrary function. The variation of λε± on
the graph of g is given by

∇λε
± ·

(
1

g′(ρ)

)

= ±(χε)′(ρ) sin θ + g′(ρ)(− sin θ ± χε(ρ) cos θ),

where χε(ρ) = √
εp′(ρ)ρ. Since χ ′(ρ) is positive and the Hugoniot curve (hε−)−1 is in-

creasing, λε− is a decreasing function of ρ on this curve for θ ∈]0,π[ such that (sin θ +
χε(ρ) cos θ) > 0. Similarly, since the Hugoniot curve (hε+)−1 is decreasing, λε+ is a increas-
ing function of ρ on this curve for θ ∈]0,π [ such that (− sin θ + χε(ρ) cos θ) > 0. �

So, in the limit ε → 0, the reachable right states are those belonging to the upper half-
domain. We denote by Sε± = Hε± ∩ {(ρ, θ), λε±(ρ, θ) ≤ λε±(ρ�, θ�)} the shock curves.

Concerning the integral curves Oε±, the admissibility conditions select the curves with
increasing eigenvalues and so the curves on the lower half-space. Therefore, the rarefaction
curves Rε± satisfy Rε± ⊂ Oε± ∩{(ρ, θ), θ ∈]0, θ�[}. The union of the shock and the rarefaction

curves form the forward wave curve W
f,ε
± = Sε± ∪ Rε±, while the union of their complemen-

tary sets form the backward wave curve W
b,ε
± = Hε±\Sε± ∪ Oε±\Rε±.
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Fig. 6 (Color online) Wave curves W
f,ε
− for the left state (ρ�, θ�) = (0.8,π/2) and W

b,ε
+ for the right

state (ρr , θr ) = (0.6,2π/3). In dashed green lines: the rarefaction curves. In continuous red lines: the shock
curves. In dotted black lines: linearly degenerate sets. ρ∗ = 1, γ = 2

3.2.3 Solutions to the Riemann Problem

Given a left state (ρ�, θ�) and a right state (ρr , θr ), an entropic solution is found by inter-
secting the forward 1-wave curve W

f,ε
− issued from the left state and the backward 2-wave

curve W
b,ε
+ issued from the right state (cf. Fig. 6). In the following study, the curves indexed

by − (resp. by +) are implicitly those issued from the left state (resp. from the right state).
Because of the monotony of the shock and rarefaction curves, we can classify the differ-
ent solutions according to the positions of the left and right states in the (ρ, θ)-plane. The
following theorem describes the solution of the Riemann problem for small ε > 0 and is
illustrated in Fig. 7.

Theorem 1 Considering a left state (ρ�, θ�) and a right state (ρr , θr ), and for ε small
enough, the solution is given by one of the four following cases:

1. Case θ� = θr . If ρ� < ρr [resp. ρ� > ρr ], the solution consists of a 1-shock [resp. 1-
rarefaction] connecting (ρ�, θ�) to (ρ̃, θ̃ ) (with ρ̃ ∈ ]ρ�,ρr [ and θ̃ > θ� = θr [resp. ρ̃ ∈
]ρr, ρ�[ and θ̃ < θ� = θr ]) and then a 2-rarefaction [resp. 2-shock] connecting (ρ̃, θ̃ ) to
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Fig. 7 Solutions to the Riemann problem for small ε > 0

(ρ�, θr ). This is summarized in the following diagram:

(ρ�, θ�)
shock−→ (ρ̃, θ̃ )

rarefaction−→ (ρr , θr ), if ρ� < ρr,

(ρ�, θ�)
rarefaction−→ (ρ̃, θ̃ )

shock−→ (ρr , θr ), if ρ� > ρr .

2. Case θ� > θr (cos θ� < cos θr ). The solution consists of a 1-rarefaction connecting (ρ�, θ�)

to (0, θ̃ ) (with ρ̃ < ρ�, ρr and θ̃ ∈ ]θr , θ�[) and then a 2-rarefaction wave connecting
(0, θ̃ ) to (ρr , θr ). We get the following diagram:

(ρ�, θ�)
rarefaction−→ (0, θ̃ )

vacuum−→ (0,˜̃θ)
rarefaction−→ (ρr , θr ).

3. Case θ� < θr (cos θ� > cos θr ). There are two sub-cases:
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– if ρε
r < (hε−)−1(θε

r ) and ρε
� < (hε+)−1(θε

� ), the solution consists of a 1-shock connecting
(ρ�, θ�) to (ρ̃, θ̃ ) (with ρ̃ > ρ�, ρr and θ̃ ∈ ]θr , θ�[) and then a 2-shock connecting
(ρ̃, θ̃ ) to (ρr , θr ). The diagram is:

(ρ�, θ�)
shock−→ (ρ̃, θ̃ )

shock−→ (ρr , θr ),

– if ρε
r > (hε−)−1(θε

r ) [resp. ρε
� > (hε+)−1(θε

� )], the solution consists of a 1-shock [resp.
1-rarefaction] connecting (ρ�, θ�) to (ρ̃, θ̃ ) (with ρ̃ ∈]ρ�,ρr [ and θ̃ > θr [resp. ρ̃ ∈
]ρr, ρ�[ and θ̃ < θ�]) and then a 2-rarefaction [resp. 2-shock] connecting (ρ̃, θ̃ ) to
(ρr , θr ). The diagram is as follows:

(ρ�, θ�)
shock−→ (ρ̃, θ̃ )

rarefaction−→ (ρr , θr ), if ρ� < ρr,

(ρ�, θ�)
rarefaction−→ (ρ̃, θ̃ )

shock−→ (ρr , θr ), if ρ� > ρr .

The detailed proof of this theorem is developed in Appendix F.1. Let us provide some ideas
of the proof. For finite ε, there exist four kinds of solutions depending on what parts of
the curves W

f,ε
− and W

b,ε
+ meet. So, for a fixed left state, the state-space is divided in four

subdomains. These subdomains depends on the left state. However, reminding that the limit
of the Hugoniot and integral curves are straight lines θ = θ� or ρ = ρ∗ (cf. Propositions 5
and 6) for all left states, the four subdomains have the same behavior as ε → 0 whatever the
left state is.

3.2.4 The Sign of θ

The conservative system (22)–(23) does not determine the sign of θ (if θ is supposed to be
in ]−π,π[). As mentioned above, this is not important since our main goal is to provide
connection conditions on p̄ between the left and right states. However, it is desirable to
determine it in the present analysis, for the sake of completeness. For this goal, we cannot
use (23) because �(cos θ) is an even function of θ . Again, we are facing an indetermination
due to the non-conservative character of the system. One possible solution is to introduce a
contact discontinuity from θ to −θ with propagation speed cos θ in the domains where ρ is
constant and cos θ is continuous. If we add such a contact wave, there is only one possible
construction given by the following:

Proposition 8 Suppose that θ�, θr ∈ [−π,π ] and θ�, θr have different signs.

1. In the subcases cos θ� = cos θr and cos θ� > cos θr of Theorem 1, the only possibility
for a contact wave connecting two states with angles respectively equal to θ̃ and −θ̃

is to propagate in the region of constant ρ and continuous cos θ corresponding to the
intermediate state of the conservative system. The propagation speed then equals to cos θ̃ .

2. In the subcase cos θ� < cos θr , the only possibility for a contact wave connecting two
states with angles respectively equal to θ̃ and −θ̃ is to propagate in the region cor-
responding to vacuum. There is no uniqueness of the propagation speed but since this
contact discontinuity occurs within a vacuum region ρ = 0, we may consider that θ is
not defined in this region.

The proof of this proposition can be found in Appendix F.2. Two cases of the Riemann
problem with θr < 0 < θ� are represented in Fig. 8. Note that the position of the contact
wave does not depend on ε. So their limits as ε goes to zero are easily obtained.
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Fig. 8 Some solutions to the Riemann problem for small ε > 0 and −π < θr < 0 < θ� < π

3.3 The Solutions of the Riemann Problem in the Limit ε → 0

In order to study the limit ε → 0, we introduce converging sequences of left and right states
((

ρε
� , θ

ε
�

)
,
(
ρε

r , θ
ε
r

)) −→
ε→0

((ρ�, θ�), (ρr , θr )),

and we look for the limits of the solutions of the associated Riemann problems. There
are three cases to consider: either none of the two states tends to the congested state
(ρ�,ρr < ρ∗), or one of the two does (ρ� < ρ∗, ρε

r → ρ∗) or both of them do (ρε
� , ρ

ε
r → ρ∗).

The case (ρε
� → ρ∗, ρr < ρ∗) is obtained by symmetry from the case (ρ� < ρ∗, ρε

r → ρ∗):
the left and right quantities have to be exchanged and the arrows have to be flipped (like in
the first case of Theorem 1). Since the solutions of the Riemann problem are bounded and
monotonous, all the sequences belong to a bounded subset of BV (R) and consequently, to
a compact subset of L1

loc(R). So we only need to prove the uniqueness of the limit of con-
verging sequences to prove the convergence of the whole sequence and we can consider that
the convergence is in the almost everywhere sense (up to the extraction of a subsequence).

As a guideline, we mention that, compared with the system with finite ε, the limit Rie-
mann problem has two additional properties: the appearance of clusters which corresponds
to the saturation of the constraint ρ ≤ ρ∗ and the disappearance of rarefaction waves and
their transformations into contact waves. In the subsequent statements, the term “limit” is a
short-hand for “limit of the solution to the Riemann problem of (22)–(23)” as ε → 0.

3.3.1 Case ρ� < ρ∗, ρr < ρ∗ (see Fig. 9)

Proposition 9 (Case ρ� < ρ∗, ρr < ρ∗) There are only three cases:

(a) Subcase θ� = θr . The limit consists of only one contact wave connecting (ρ�, θ�) to
(ρr , θ�):

(ρ�, θ�)
contact−→ (ρr , θr ).

The traveling speed is equal to cos θ�.
(b) Subcase θ� > θr . The limit consists of two contact waves connecting the two states to a

vacuum state:

(ρ�, θ�)
contact−→ (0, θ�)

vacuum−→ (0, θr )
contact−→ (ρr , θr ).

The traveling speeds are respectively equal to cos θ� and cos θr .
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Fig. 9 Limit solutions of the Riemann problem for ε = 0 and ρ�,ρr < ρ∗

(c) Subcase θ� < θr . The limit consists of two shocks connecting the left state (ρ�, θ�) to a
congested state (ρ∗, θ̃ , p̄) and then connecting (ρ∗, θ̃ , p̄) to the right state (ρr , θr ):

(ρ�, θ�)
shock−→ (ρ∗, θ̃ , p̄)

shock−→ (ρr , θr ),

where θ̃ is the unique solution of

[�(cos(θ))]r
[ρ cos(θ)]r

[ρ]r
− [�(cos(θ))]�

[ρ cos(θ)]�
[ρ]�

= [�(cos(θ))]�r ,

θ ∈ [min(θ�, θr ),max(θ�, θr )] ,

and p̄ is given by

p̄ = [�(cos(θ))]�[ρ cos(θ)]�
[ρ]� − [�(cos(θ))]�

= [�(cos(θ))]r [ρ cos(θ)]r
[ρ]r − [�(cos(θ))]r .

The shock speeds are given by the Rankine-Hugoniot condition for the density (31).

Note that in clustered region, since ρ = ρ∗, the state is determined by the values of θ and p̄.
This is why we add a third component giving the value of p̄ to the vector defining the state
in the clustered region.

In this proposition, the quantities [f ]� := f̃ − f�, [f ]r := f̃ − fr denote the difference
between the intermediate value and the left (or right) value of the quantity f and [f ]r� :=
fr − f� denotes the difference between the right and left values of the quantity f .

This proposition covers several kinds of interfaces described in Formal Statement 1: the
case (a) is an occurrence of an interface (UC)-(UC), the case (b) of an interface (UC)-(V) and
the case (c) of an interface (C)-(UC). Moreover, the proposition implies that θ is continuous
inside (UC) domains.

Note that all the intermediate states are explicitly given or are solutions of a non-linear
equation and so, are explicitly computable. The proof of this proposition is given in Appen-
dix G.1.

3.3.2 Case ρ� < ρ∗, ρr = ρ∗ (see Fig. 10)

This case is typical of the situation at a cluster boundary. In this case, the main new feature is
the appearance of declustering waves as limits of the rarefaction waves. These declustering
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Fig. 10 Limit solutions of the Riemann problem for ε = 0 and ρ� < ρ∗ , ρε
r → ρ∗

waves are instantaneous cancellations of the pressure. The following lemma details this
statement:

Lemma 1 (Limit of rarefaction waves, declustering wave) Let (ρε
r , θr ) be a sequence of

right states such that ρε
r → ρ∗ and εp(ρε

r ) → p̄r > 0. Introduce a converging sequence of
states (ρ̃ε, θ̃ ε) lying on the rarefaction curves issued from the right states, such that ρ̃ε < ρε

r .
If ρ̃ = lim ρ̃ε < ρ∗, then the rarefaction wave tends to the combination of a contact wave

between the state (ρ̃, θr ) and (ρ∗, θr , p̄r ) with speed cos θr = λ+ and a declustering wave,
i.e. a contact wave with infinite speed which cancels the pressure, which provides a transition
between (ρ∗, θr , p̄r ) and (ρ∗, θr ,0).

If ρ̃ = lim ρ̃ε = ρ∗ then the rarefaction wave tends to a shock wave with infinite speed
between the states (ρ∗, θr , ¯̄p) and (ρ∗, θr , p̄r ), where ¯̄p = lim εp(ρ̃ε).

The proof of this lemma is developed in Appendix G.2.
The next proposition provides the solutions of the limit Riemann problem and Fig. 10

schematically describes them.

Proposition 10 (Case ρ� < ρ∗, ρr = ρ∗) There are only three cases:

(a) Subcase θ� = θr . The limit solution consists of one contact wave connecting the left state
(ρ�, θ�) to an intermediate congested state (ρ∗, θr , p̄ = 0) and then a cluster contact
(with infinite speed):

(ρ�, θ�)
contact−→ (ρ∗, θr ,0)

declust.→ (ρ∗, θr , p̄).

(b) Subcase θ� > θr . The limit solution consists of one contact wave connecting the left
state to vacuum, and then another contact wave connecting the vacuum to a congested
and pressureless state (ρ∗, θr ,0) and finally a cluster contact connecting (ρ∗, θr ,0) to
(ρ∗, θr , p̄):

(ρ�, θ�)
contact−→ (0, θ�)

vacuum−→ (0, θr )
contact−→ (ρ∗, θr ,0)

declust.→ (ρ∗, θr , p̄).

(c) Subcase θ� < θr . The limit solution consists of one shock wave connecting the left state
(ρ�, θ�) to an intermediate congested state (ρ∗, θr , ¯̄p) and one contact wave with infinite
propagation speed connecting (ρ∗, θr , ¯̄p) to the right state (ρ∗, θr , p̄):

(ρ�, θ�)
shock−→ (ρ∗, θ�, ¯̄p)

contact−→ (ρ∗, θr , p̄),
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Fig. 11 Limit solutions of the Riemann problem for ε = 0 and ρ� < ρ∗ , ρε
r → ρ∗

where the intermediate pressure ¯̄p is equal to

¯̄p = [�(cos θ)]�
[ρ cos θ ]�

[ρ]�
− [�(cos θ)]� .

The shock speed is given by the Rankine-Hugoniot condition for the density (31).

In practice, when instantaneous waves occur (i.e. with infinite propagation speed), it means
that the initial data of the Riemann problem does not spontaneously appear during the dy-
namical evolution of the limit problem. They have to be ignored.

Like Proposition 9, this new proposition covers several kinds of interfaces described in
Formal Statement 1: cases (a) and (c) are occurrences of interfaces (C)-(UC), the left wave
of case (b) is an occurrence of an interface (UC)-(V) whereas the right wave of the case (b)
is an interface (C)-(V).

The proof of this proposition is in Appendix G.3.

3.3.3 Case ρ� = ρr = ρ∗, ρε
� < ρε

r (see Fig. 11)

We assume in addition that εp(ρε
� ) and εp(ρε

r ) have finite positive limits, denoted by p̄� > 0
and p̄r > 0. Figure 11 provides a sketch of the solutions.

Proposition 11 (Case ρ� = ρr = ρ∗, ρε
� < ρε

r ) There are only three cases:

(a) Subcase θ� = θr . The limit solution consists of a uniform constant state (ρ∗, θ�, p̄�).
(b) Subcase θ� > θr . The limit solution consists of two contact waves and two cluster contact

with infinite traveling speed:

(ρ∗, θ�, p̄�)
declust.−→ (ρ∗, θ�,0)

contact−→ (0, θ�)
vacuum−→ (0, θr )

contact−→ (ρ∗, θr ,0)

declust.−→ (ρ∗, θr , p̄r ).

(c) Subcase θ� < θr . The limit solution consists of two shock waves with infinite propagation
speed connecting the left state (ρ∗, θ�, p̄�) to (ρ∗, θ̃ ,+∞) and then (ρ∗, θ̃ ,+∞) to
(ρ∗, θr , p̄r ):

(ρ∗, θ�, p̄�)
shock−→ (ρ∗, θ̃ ,+∞)

shock−→ (ρ∗, θr , p̄r ),

where θ̃ is the only solution of

[�(cos(θ))]r [cos(θ)]r
[�(cos(θ))]�[cos(θ)]� =

(
p̄�

p̄r

) 1
γ

. (35)
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These solutions display only one kind of interface among those discussed in Formal State-
ment 1: the case (b) is an occurrence of an interface (C)-(V). According to the cases (a)
and (c), the solution inside clusters is continuous. However the case (c) does not provide a
meaningful solution since the pressure becomes infinite and this is why Formal Statement 1
does not allow to decide what happens at the interface (C)-(C), i.e. a collision of two clusters.
It seems to result from the fact that in this case the Riemann problem models the collision
of two infinite one-dimensional clusters. Section 2.5 provides a description of the collision
between finite-size one-dimensional clusters. We have seen that the pressure p̄ involves a
Dirac delta in time. Indeed, according to case (c), the infinite propagation speed of the waves
inside clusters implies the discontinuity of the function θ in time: θ = θ� + (θ̃ −θ�)H(t − tc),
where H denotes here the Heaviside function. Then, (23) leads to

(�(θ̃) − �(θ�))δ(t − tc) = ∂xp̄,

which justifies to look for a pressure with a Dirac delta in time. The Riemann problem does
not allow to take into account such a pressure.

The proof of the proposition is deferred Appendix G.4.

3.4 Connecting the Riemann Problem Analysis to Formal Statement 1

We remind that, by contrast with the finite ε system (4)–(6), which is a standard hyperbolic
system, the limit system (8)–(11) exhibits two additional characteristics:

(i) the appearance of clusters corresponding to the saturation of the constraint ρ = ρ∗

(ii) the appearance of vacuum

The previous study helps in understanding the dynamics of the interfaces between un-
clustered states (UC) 0 < ρ < ρ∗, vacuum (V) ρ = 0 and clusters (C) ρ = ρ∗. Up to now, no
rigorous theory for the limit ε → 0 exists and so, we cannot have access to these dynamics
rigorously. Our method is to investigate these dynamics through the inspection of the limit
ε → 0 of the solutions of the Riemann problem of the finite ε system.

The first remark is that waves with infinite speed correspond to an instantaneous transi-
tion from the initial data to some different solution. To some extent, this means that the cor-
responding initial datum is unstable, and therefore, that it will never appear spontaneously
in the course of the evolution of the system. Therefore, we can discard initial data which ex-
hibit this phenomenon, and replace them by the one which is found after the infinite speed
wave has been applied.

The second remark is that the various solutions of the Riemann problem can be grouped
by situations corresponding to the four cases listed in Formal Statement 1, i.e. interfaces (C)-
(UC), (UC)-(V), (C)-(V) and (UC)-(UC). As discussed in the lines following statement 11,
the case (C)-(C) is not accessible by the Riemann problem analysis because the collision
dynamics of two clusters depend on their size, and because the Riemann problem only al-
lows to consider infinite size clusters. This is why cluster collisions are analyzed separately
in Proposition 3. However, cluster collisions is a complex phenomenon in 2D and Propo-
sition 3 only provides a one-dimensional analysis. The two-dimensional analysis is still in
progress.

To highlight the link between the Riemann problem analysis and Formal Statement 1,
we point out which solutions of the Riemann problem correspond to which case in Formal
Statement 1:
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Interface (C)-(UC): it appears in

– Proposition 9, subcase (c): we see that the intermediate congested state is separated from
the left and right states by two (C)-(UC) interfaces. We notice that (24) and (25) are
respectively the relations for the pressure and the shock speed stated at Proposition 9.

– Proposition 10, subcase (c) (if ignoring the contact wave with infinite speed). We can
also view subcase (a) as a particular case where the velocities of (C) and (UC) are equal
(in which case p̄ = 0 in the cluster and the interface moves with the common velocity).
Again, these two cases are consistent with (24) and (25).

Interface (UC)-(V): it appears in

– Proposition 9, subcase (b) as two contact waves between the unclustered left and right
states and the vacuum intermediate state.

– Proposition 10, subcase (b) where the first wave is a contact between the left unclustered
state and the vacuum middle state.

In both cases, the velocity of the interface is that of the non-vacuum states and, of course,
the pressure is identically zero. Therefore, the situation is as depicted in Formal Statement 1.

Interface (C)-(V): it appears in

– Proposition 10, subcase (b), where the second wave is a contact wave between the vac-
uum middle state and the right clustered state. We notice that in this case, the clustered
state must have zero pressure (otherwise, a declustering wave instantaneously relaxes the
pressure to zero).

– Proposition 11, subcase (c), where the left and right clustered states are separated by a
vacuum intermediate state. Again, in this case, the pressure inside the clusters is identi-
cally zero.

In both cases, the velocity of the (C)-(V) interface is that of the cluster. Therefore, the
situation is as depicted in Formal Statement 1.

Interface (UC)-(UC): it appears in

– Proposition 9, subcase (a). We see that this situation is that of a standard contact disconti-
nuity for the uncongested system. The velocities on the uncongested states are equal and
equal to that of the interface, and of course, the pressure is identically zero. Therefore, the
situation is again as depicted is Formal Statement 1.

We feel that these observation provide a very strong support to Formal Statement 1. As
pointed out above, this statement allows to close the system (8)–(11) at least until clusters
meet. In the one-dimensional framework, Proposition 3 provides the cluster collision dy-
namics. The investigation of cluster dynamics in the two-dimensional case is still work in
progress.

4 Conclusion

In this paper, we have studied a continuum model describing a system of particles with
short-range repulsive and long-range attractive interaction. This is a model for the study of
gregariousness among mammal species for instance. We have focused on the effect of the
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short-range repulsion and looked at the regime where the interaction is turned on suddenly
when the local density becomes close to some limit associated to congestion. We have mod-
eled this effect by introducing a perturbation parameter ε and studied the limit ε → 0. We
have shown that, in the limit regime, the congested regions are domains where the flow is
incompressible. The complete determination of the limit system requires the knowledge of
the interface conditions at the boundaries of the congested regions. We have derived these
conditions by looking at a model one-dimensional situation (corresponding to the normal
direction to the interface) and analyzing the solutions of the Riemann problem for the per-
turbation model (with finite ε). Taking the limit ε → 0 in the solutions of the Riemann
problem allowed us to provide the missing conditions at the interfaces.

In future work, we will continue the investigation of the interface conditions at the cluster
interfaces and will try to show their relevance beyond the special case of one-dimensional
Riemann problem solutions. We will also further investigate cluster collision dynamics, in
dimensions more than one, since this analysis is not accessible by Riemann problem tech-
niques. At the numerical level, we will seek numerical methods for the resolution of the
constrained hyperbolic problem and we will perform numerical comparisons between the
particle and continuum models.
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Appendix A: Derivation of a Macroscopic Model of Short-range Repulsive
and Long-range Attractive Interactions

A.1 Individual Based Model with Speed and Congestion Constraints

We consider N particles in R
2 labeled by k ∈ {1, . . . ,N}. These particles are disks of radii d .

The motion of the particles is described by the time evolution of their positions Xk and
velocity vectors ωk . Like in the Vicsek algorithm [16, 22, 44], the velocity magnitude of
each particle is the same, is constant in time and supposed equal to c > 0. The velocity
direction ωk belongs to the unity circle S

1 = {ω ∈ R
2, |ω|2 = 1}. This is a usual assumption

in the modeling of several biological systems like flocks of birds [3], schools of fish [23, 24]
or herds of sheep [36, 37].

We start with a simple continuous-in-time model of a particle system subject to attractive-
repulsive binary interactions which describe the aggregation of particles with occupation
constraints. The evolution of the positions and velocities is given by:

dXk

dt
= cωk, (36)

dωk

dt
= (Id − ωk ⊗ ωk)

(
νa

k ξa
k − νr

k ξ
r
k

)
, (37)

where νa
k ξa and νr

k ξ
r are the attractive and repulsive forces respectively. The matrix (Id −

ωk ⊗ ωk) is the orthogonal projector onto the plane orthogonal to ωk . It is applied to both
forces in order to keep the magnitude of the speed constant in time. ξa and ξ r are the local
centers of mass of the particle distribution inside interaction disks centered at Xk with radii
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respectively equal to Ra and Rr

ξa
k =

∑
j,|Xj −Xk |≤Ra

(Xj − Xk)
∑

j,|Xj −Xk |≤Ra
1

, ξ r
k =

∑
j,|Xj −Xk |≤Rr

(Xj − Xk)
∑

j,|Xj −Xk |≤Rr
1

.

νa
k and νr

k are scaling factors which provide the intensities of the forces. The repulsive
force radius Rr is supposed much smaller than the attractive force radius Ra . The result-
ing force attracts the particles towards the center of mass of the particle distribution at large
distances and repels them from the center of mass of the particle distribution at short dis-
tances. To some extent, it is an implementation of the attractive-repulsive scheme proposed
by Couzin [16].

Finally, we suppose that νa is a constant and νr depends on the local density inside the
repulsive interaction disk:

νa
k = νa, νr

k = νr

(
ρr

k

)
, ρr

k =
πd2

∑
j,|Xj −Xk |≤Rr

1

πR2
r

,

where νr is an increasing function. The function νr prevents the local density from exceeding
the maximal density ρ∗ which corresponds to the case where all particles are in contact with
their neighbors. Clearly, ρ∗ is the ratio of the maximal occupied surface in a disk of radius
Rr by disks of radii d and is of the order of unity. Therefore, the function νr tends to infinity
as ρr

k → ρ∗. We defer the explicit choice of the function νr to the end of the section.

A.2 Mean-field Model, Hydrodynamic Limit and Macroscopic Model

The goal of this appendix is to provide a model for large systems of interacting particles
according to (36)–(37) at large time and space scales. For this purpose, we will perform a
sequence of rescalings. The first rescaling aims at taking into account the large number of
interacting particles: it leads to the so-called mean field model. Assuming that the system
is included in a fixed box, the limit N → +∞ implies that the area πd2 occupied by each
particle tends to 0 like 1/N in such a way that the total area Nπd2 occupied by the particles
remains constant. We denote by α = limN→+∞ Nπd2 the fraction of the surface occupied
by the particles. The second rescaling is a hydrodynamic scaling where large time and space
scales are considered. Both scaling are classical and are well detailed in [13, 20]. They have
been applied to swarming model in [11, 22, 26].

A.2.1 Formal Derivation of the Mean-field Model

We refer to [42] for classical references on the mean-field limit. We consider the empirical
distribution f N(x,ω, t) defined by

f N(x,ω, t) = 1

N

N∑

k=1

δ(x − Xk(t))δ(ω,ωk(t)).

δ(x) denote the Dirac delta on R
2, while δ(ω,ω0) denotes the Dirac delta on S

1 centered at
ω0 (i.e. δ(ω,ω0) is the probability measure supported by {ω0}). It is an easy matter to check
that f N satisfies the following kinetic equation

∂tf
N + cω · ∇xf

N + ∇ω · ((FN
a − FN

r

)
f N

) = 0,
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where FN
a and FN

r are the attractive and repulsive forces, given by

FN
a (x,ω, t) = νa(Id − ω ⊗ ω)ξa

N, FN
r (x,ω, t) = νN

r (Id − ω ⊗ ω)ξr
N,

with

ξa
N(x,ω, t) =

∫
Ka(y − x)(y − x)ρN(y, t) dy

∫
Ka(y − x)ρN(y, t) dy

,

ξr
N(x,ω, t) =

∫
Kr(y − x)(y − x)ρN(y, t) dy

∫
Kr(y − x)ρN(y, t) dy

,

νN
r = νr

(
Nπd2

∫
Kr(y − x)ρN(y, t) dy

∫
Kr(y − x)(y, t) dy

)

,

where ρN(x, t) = ∫
�∈S1 f N(x,�, t) d� is the local density and Ka (resp. Kr ) is the indicator

function of the disk of radius Ra (resp. Rr ). Here, it is clear that more general kernels Ka ,
Kr can be used.

The formal mean-field limit N → +∞ of this model is (we recall that α =
limN→+∞ Nπd2):

∂tf + cω · ∇xf + ∇ω · ((Fa − Fr)f ) = 0, (38)

Fa(x,ω, t) = νa(Id − ω ⊗ ω)ξa, Fr(x,ω, t) = νr(Id − ω ⊗ ω)ξr, (39)

ξa(x,ω, t) =
∫

Ka(y − x)(y − x)ρ(y, t) dy
∫

Ka(y − x)ρ(y, t) dy
,

(40)

ξr(x,ω, t) =
∫

Kr(y − x)(y − x)ρ(y, t) dy
∫

Kr(y − x)ρ(y, t) dy
,

νr = νr

(
α

∫
Kr(y − x)ρ(y, t) dy
∫

Kr(y − x) dy

)

, ρ(x, t) =
∫

f (x,ω, t) dω. (41)

Rigorous justifications of this limit are outside the scope of this article.

A.2.2 Hydrodynamic Scaling

In order to select the relevant scales, we first rewrite our system in dimensionless variables.
We consider a space scale x0 (typically the range Rr of the repulsive force) and we choose a
time scale t0 = x0/c. The associated dimensionless time and space variables are t ′ = t/t0 and
x′ = x/x0. We also introduce scaled collision kernels K ′

a,r such that Ka,r (x0x′) = K ′
a,r (x),

scaled intensities ν ′
a = νax

2
0/c, ν ′

r = νrx
2
0/c and a scaled distribution function f ′ = αf . In

the case where Ka,r are indicator functions of balls of radii Ra,r , this amounts to rescaling
the radii to new values R′

a,r = Ra,r/x0. After removing the primes, the system in the new
variables and with the new unknowns is similar to (38)–(41) but with c = 1 and α = 1.

To derive the large time and space dynamics, we introduce the following change of
variables x̃ = ηx, t̃ = ηt with η 	 1. In the new variables, the distribution function
f η(x̃,ω, t̃) = f (x,ω, t) satisfies the following system (omitting the tildes):

η (∂tf
η + ω · ∇xf

η) + ∇ω · ((Fη
a − Fη

r

)
f η

) = 0,
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Fη
a (x,ω, t) = νη

a (Id − ω ⊗ ω)ξa
η, ξa

η(x,ω, t) = 1

η

∫
Kη

a (
y−x
η

)(y − x)ρη(y, t) dy
∫

K
η
a (

y−x
η

)ρη(y, t) dy
,

F η
r (x,ω, t) = νη

r (Id − ω ⊗ ω)ξr
η, ξr

η(x,ω, t) = 1

η

∫
Kη

r (
y−x
η

)(y − x)ρη(y, t) dy
∫

K
η
r (

y−x
η

)ρη(y, t) dy
,

νη
r = νη

r

( 1
η2

∫
Kη

r (
y−x
η

)ρη(y, t) dy
1
η2

∫
K

η
r (

y−x
η

) dy

)

, ρη(x, t) =
∫

f η(x,ω, t) dω,

where Kη
a and Kη

r are the scaled interaction kernels and νη
a , νη

r , the scaled intensities.
We first suppose that the repulsive kernel Kη

r and the repulsive intensity νη
r are unchanged

in the scaling: Kη
r = Kr , νη

r (ρ) = νr(ρ). This means that the range of the repulsive force is
supposed of order η. To analyze the limit η → 0, we first need an expansion of ξr

η in terms
of η. The following lemma provides the result for an isotropic kernel Kr (Kr(z) = Kr(|z|))

Lemma 2 Under suitable regularity assumptions on ρη, we have the expansion

1

η2

∫
Kr

(∣
∣
∣
∣
y − x

η

∣
∣
∣
∣

)

ρη(y) dy = aρη(x) + o(η),

ξr
η(x,ω, t) = η

B∇xρ
η(x)

aρη(x)
+ o(η),

νη
r

( 1
η2

∫
Kη

r (
y−x
η

)ρη(y, t) dy
1
η2

∫
K

η
r (

y−x
η

) dy

)

= νr(ρ) + o(1),

where a = ∫
Kr(|z|) dz and B = ∫

Kr(|z|)z ⊗ zdz = (
∫

Kr(r)r
3 dr Id).

The proof of this lemma is elementary and omitted. In the case where Kr is the indicator
function of the disk of radius Rr , the coefficients a and B are equal to a = πR2

r and B = b Id,

where b = π
R4

r

4 Id. Now we consider the scaling of the attractive kernel Kη
a and attractive

intensity νη
a . We suppose that the attractive force remains non-local as η tends to 0 and

weaker than the repulsive force. To express these assumptions, we suppose that the scaled
attractive kernel Kη

a and intensity νη
a are given by

Kη
a (z) = Ka(ηz), νη

a = η2νa.

For simplicity, we choose νa = 1. We also absorb the ratio b/a into the definition of νr . In
particular, in the case where Kr is the indicator of the ball of radius Rr , we can fix x0 = Rr/2.

Under all these modeling assumptions and thanks to Lemma 2, the system can be written
formally, in the limit η → 0:

∂tf + ω · ∇xf + ∇ω · ((Fa − Fr)f ) = 0, (42)

Fa(x,ω, t) = (Id − ω ⊗ ω)ξa, ξa(x, t) =
(∫

Ka(|y − x|)(y − x)ρ(y, t) dy
∫

Ka (|y − x|) ρ(y, t) dy

)

, (43)

Fr(x,ω, t) = νr(ρ)(Id − ω ⊗ ω)̃ξr, ξ̃r(x, t) = ∇xρ(x, t)

ρ(x, t)
. (44)
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A.2.3 Macroscopic Model

The last step is to obtain the dynamics of macroscopic quantities associated to the flow. Here
we will only consider the density and momentum. We find that under suitable regularity and
decay assumptions on f , the density ρ = ∫

f dω and momentum ρ� = ∫
f ωdω satisfy the

following system of mass and momentum balance equations:

∂tρ + ∇x · ρ� = 0, (45)

∂tρ� + ∇x ·
(∫

f ω ⊗ ωdω

)

=
(∫

(Id − ω ⊗ ω)f dω

)

(ξa − νr(ρ)̃ξr), (46)

ξa(x, t) =
(∫

Ka (|y − x|) (y − x)ρ(y, t) dy
∫

Ka (|y − x|) ρ(y, t) dy

)

, ξ̃r(x, t) = ∇xρ(x, t)

ρ(x, t)
. (47)

To close system (45)–(46), we assume that f is a monokinetic distribution:

f (x,ω, t) = ρ(x, t)δ(ω,�(x, t)),

with |�(x, t)| = 1. This assumptions presupposes that a local equilibrium is reached where
all particles are locally aligned. Although no justification of this assumption can be made at
this point, the features displayed by the system seem meaningful in view of gregariousness
modeling. We find:

∂tρ + ∇x · ρ� = 0, (48)

∂t (ρ�) + ∇x · (ρ� ⊗ �) = ρ(Id − � ⊗ �)(ξa − νr(ρ)̃ξr), (49)

where ξa and ξ̃r are given by (47). Factoring out ρ in (49), using (48), we also get the
following form of the system:

∂tρ + ∇x · ρ� = 0,

∂t� + � · ∇x� + νr(ρ)(Id − � ⊗ �)̃ξr = (Id − � ⊗ �)ξa,

ξa(x, t) =
(∫

Ka(|y − x|)(y − x)ρ(y, t) dy
∫

Ka (|y − x|) ρ(y, t) dy

)

, ξ̃r(x, t) = ∇xρ(x, t)

ρ(x, t)
.

A.3 Repulsive Force Intensity and Macroscopic Model

Let us return now to the choice of the function νr . This function tends to infinity when
ρ → ρ∗. Like in the traffic model devised in [6], we assume that this function behaves like
ργ when ρ 	 ρ∗ and tends to infinity when ρ → ρ∗. The prototype of such a function is

p(ρ) = 1

( 1
ρ∗ − 1

ρ
)γ

, (50)

where γ ≥ 1. We will keep this example constantly in the paper for simplicity but the results
are valid for all functions having the same properties. We consider that νr(ρ) = ρp′(ρ). In
this way, we suppose that repulsion acts like a standard pressure force in a gas, but, when
the density reaches the congestion density ρ∗, the pressure tends to infinity. Since the equa-
tion for � is used instead of that for ρ�, the interpretation of p in standard gas dynamics
terms would rather be that of an enthalpy (i.e. p′(ρ) = P ′(ρ)/ρ where P is the actual fluid
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mechanical pressure), but the results would be similar if we considered the equation for ρ�

instead. Indeed, because of the constraint |�| = 1, the system is non-conservative in the
projection term (Id − � ⊗ �). Finally, we get the following system

∂tρ + ∇x · ρ� = 0, (51)

∂t� + � · ∇x� + (Id − � ⊗ �)∇xp(ρ) = (Id − � ⊗ �)ξa, (52)

ξa(x, t) =
(∫

Ka(|y − x|)(y − x)ρ(y, t) dy
∫

Ka(|y − x|)ρ(y, t) dy

)

. (53)

This system provides the starting point of the present article. Since this paper is focused
on the treatment of congestion phenomena, we remove the non-local attractive force. Indeed,
this term is a zero-th order derivative term and does not intervene in the jump relations across
discontinuities.

Appendix B: Conservative Laws for the One-dimensional System

In this appendix, we are looking for conservative forms of the one-dimensional system (20)–
(21). The most general conservative form is written:

∂tg(ρ, θ) + ∂xf (ρ, θ) = 0, (54)

where g and f are smooth functions of ρ and θ . The following proposition exhibits an
infinite set of such conservative forms.

Proposition 12 If (g, f ) is a conservative form of (20)–(21), then their partial derivatives
are related by

∂f

∂ρ
= ∂g

∂ρ
cos θ − ∂g

∂θ
sin θp′(ρ),

∂f

∂θ
= ∂g

∂θ
cos θ − ∂g

∂ρ
ρ sin θ. (55)

Moreover, if g is a function with separated variables g(ρ, θ) = u(θ)v(ρ), then u and v

satisfy

ρv′′(ρ) = kp′(ρ)v(ρ), (56)

u′′(θ) + (cotan θ)u′(θ) = ku(θ), (57)

where k is a constant real number. Each k ∈ R gives rise to possible (g, f ) pairs.

Proof Performing the chain rule in (54) and using (20), (21), we easily get (55). Then, using
that differentiations with respect to ρ and θ commute, (55) gives rise to an elliptic equation
satisfied by g and inserting the hypothesis of separated variables, we obtain (56), (57).

Equation (57) is the Legendre differential equation (in polar coordinates). The two-
dimensional vector space of solutions of this equation is spanned by the Legendre functions
of first and second species and each of them gives rise to possible (g, f ) pairs. �

The solutions of (56) exists for all k ∈ R. However, they have a priori no explicit expression
except for k = 0. In this case, the 2-dimensional vector space of solutions of (56) is spanned
by {1, ρ} and for (57), is {1,�(cos θ)}. We can actually check that the following (g, f ) pairs

(g, f ) = (ρ,ρ cos θ), (58)
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(g, f ) = (�(cos θ),�(cos θ) + p(ρ)), (59)

(g, f ) = (ρ�(cos θ), ρ cos θ�(cos θ) + P (ρ)), (60)

where P is an antiderivative of ρp′(ρ), are non trivial solutions. The conservative form
studied in this article corresponds to the pairs (58) and (59). The pairs (58) and (60) form
another such conservative system.

Appendix C: Proof of Proposition 3 (Cluster Collisions)

Proof 1. Let x0 ∈ [a(tc),m] and h ∈ C∞
c (D′′), where D′′ is a neighborhood of x0 in D (cf.

Fig. 5). Applying the Green’s formula on the domain D′′, we obtain:

〈∂t�(cos θ) + ∂x�(cos θ),h〉 = (�(cos θ) − �(cos θ�))

∫ x0+η

x0−η

h(tc, x) dx, (61)

where 〈., .〉 denotes the duality brackets. Since we look for p̄(x, t) = π(x)δ(t − tc), we also
have

−〈∂xp̄, h〉 = −
∫ x0+η

x0−η

∂xπ(x)h(tc, x) dx. (62)

If (23) is satisfied, then (61) and (62) imply that

(�(cos θ) − �(cos(θ�))) = −∂xπ(x0).

The same arguments (for any x ∈ [a(tc), b(tc)]) lead to

−∂xπ(x) =
{

(�(cos θ) − �(cos(θ�))), if x ∈ [a(tc),m],
(�(cos θ) − �(cos(θr ))), if x ∈ [m,b(tc)],

and (supposing π continuous) to

π(x) =
⎧
⎨

⎩

(�(cos θ) − �(cos(θ�)))(m − x)

+(�(cos θ) − �(cos(θr )))(b(tc) − m), if x ∈ [a(tc),m],
(�(cos θ) − �(cos(θr )))(b(tc) − x), if x ∈ [m,b(tc)].

Supposing that p̄ and then π equal zero outside the clusters, we get

π(a(tc)) = (�(cos θ)−�(cos(θ�)))(m− a(tc))+ (�(cos θ)−�(cos(θr )))(b(tc)−m) = 0.

2. Let h be a test function in the neighborhood D′ of D (cf. Fig. 5). We denote D1 =
D ∩ {t ≤ tc} and D2 = D ∩ {t ≥ tc}. Applying Green’s formula, we easily obtain:

〈∂tρ + ∂x(ρ cos θ),h〉 = −ρ∗
∫ b�(tc)

a�(tc)

h(tc, x) dx − ρ∗
∫ br (tc)

ar (tc)

h(tc, x) dx

+ ρ∗
∫ b(tc)

a(tc)

h(tc, x) dx.
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Thus, the density equation (22) (satisfied in the distributional sense) stems from the identity

(b�(tc) − a�(tc)) + (br(tc) − ar(tc)) = (b(tc) − a(tc)).

If we now apply Green’s formula with a test function h ∈ C∞
c (D), we easily show that

(23) is satisfied in the distributional sense. Note that in this case, the test function has a
compact support in D since �(θ) is not defined in the vacuum region ρ = 0. �

Appendix D: Proof of Proposition 5 (Study of the Hugoniot Loci)

In this section, we provide a detailed study of the Hugoniot curves. Let (ρ�, θ�) ∈ ]0, ρ∗[ ×
]0,π[ be an arbitrary left state. We need to find the geometric behavior of the Hugoniot
loci associated to this left state. The classical theory of nonlinear conservation laws pro-
vides only information on the local behavior of Hε±. Each Hε+, Hε− consists of a one-
dimensional manifold tangent to the integral curves of the right eigenvectors up to the sec-
ond order. In the (ρ,�(cos θ))-plane, the 1-Hugoniot curve Hε− is thus locally decreasing
and the 2-Hugoniot curve Hε+ is locally increasing because of the direction of the vectors
rε± = (±ρ |sin θ | ,√εp′(ρ)ρ). In the (ρ, θ)-plane, the 1-Hugoniot curve Hε− defines a locally
increasing function θ = (hε−)−1(ρ) while the 2-Hugoniot curve Hε+ defines a locally decreas-
ing function θ = (hε+)−1(ρ). Actually, this property is global (i.e. (hε−)−1 (resp. (hε+)−1) is a
globally increasing (resp. decreasing) function of ρ for all ρ ∈]0, ρ∗[). To prove this, let us
begin with a simple and useful lemma.

Lemma 3 For all u ∈ [−1,1], the function fu : v ∈] − 1,1[→ �(v) − u�(v) is convex and
has a minimum at the point u. In particular, we have

∀v �= u, (�(v) − �(u)) − u (�(v) − �(u)) = fu(v) − fu(u) > 0.

The proof is elementary and omitted. We now analyze the behavior of Hε± in more detail
when ε becomes small. Proposition 5 is an immediate consequence of the following lemma.

Lemma 4 The behavior of Hε+, Hε− does not depend on the left state. Let (ρ�, θ�) be a left
state. Then:

(i) Suppose θr is fixed. The function ρr → Hε(ρ�, θ�, ρr , θr ) has at most two zeros and there
exists ε′ > 0 such that for all ε < ε′, the function ρr → Hε(ρ�, θ�, ρr , θr ) has only one
positive zero. This zero tends to ρ∗ as ε tends to 0.

(ii) Suppose ρr is fixed. Then ∀ε > 0, the function θr → Hε(ρ�, θ�, ρr , θr ) has two zeros,
one lower and one larger than θ�, and both of them tend to θ� as ε tends to 0.

The Hugoniot locus tends to the union of the straight lines {θ = θ�} and {ρ = ρ∗}.

Note that these results imply that the Hugoniot locus consists of two monotonous curves as
functions of ρ (otherwise H with fixed θr would have more than two zeros). The local be-
havior of the Hugoniot locus enables us to determine that the increasing curve is associated
to the first eigenvalue λε− and the decreasing curve to the second eigenvalue λε+.
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Proof (i) Let us fix the left state (ρ�, θ�) and the right angle θr . So as to get a more readable
proof, the function ρr → Hε(ρ�, θ�, ρr , θr ) will be denoted by H but its derivative will be
denoted by a partial derivative ∂ρr H . We look for the zero set of H in the interval ]0, ρ∗[.
As it can be easily checked, the function H is strictly convex and thus has at most two zeros.
Moreover, the value of H at ρr = ρ� is strictly negative, if θr is not equal to θ�. Like the
function p, H tends to +∞ when ρr tends to the maximal density ρ∗. Then H has only one
zero in ]ρ�,ρ

∗[. We have

H(0) = ρ� (εp(ρ�) + [�(cos θ)] cos θ� − [�(cos θ)]) .

Lemma 3 implies that the second term of this expression is strictly negative and thus H(0)

becomes strictly negative for small ε. Thanks to its convexity, we deduce that there exists ε′

such that for all ε < ε′, the function H has no zero in the interval ]0, ρ�[.
To show that the only zero of H tends to ρ∗, let us rewrite H as follows

H(ρr) = [εp(ρ)] [ρ] + [�(cos θ)] [ρ] − [�(cos θ)] [ρ] cos θr − [�(cos θ)] [cos θ ]ρ�,

and thanks to Lemma 3, the zero of H satisfies

[εp(ρ)] [ρ] ≥ [�(cos θ)] [cos θ ]ρ� > 0.

So we can easily conclude that the zero of H tends to ρ∗.
(ii) Like in the first point, let us denote the function θr → Hε(ρ�, θ�, ρr , .) by H . First,

the value taken by H at θr = θ� is positive. Some easy computations leads to the following
expression of the first (partial) derivative of H :

∂H

∂θr

(θr ) = 1

sin θr

(ρ� [cos θ ] + [�(cos θ)]ρr sin2 θr).

As ρ� and ρr are positive, the sign of the derivative is the same as the sign of [cos θ ].
Thus H is increasing on [0, θ�] and decreasing on [θ�,π]. Moreover using the fact that
�(u) = �(u) + log(1 + u), we can write H as

H(θr) = �(cos θr) [ρ(1 − cos θ)] + log(1 + cos θr) [ρ cos θ ] + A(ε,ρr, θr ),

where A is a bounded function. It implies that H tends to −∞ when θr tends to 0. In the
same way and by using the identity �(u) = −�(u)+ log(1 −u), we can show that H tends
also to −∞ when θr tends to π . We deduce that H has exactly two zeros.

Let us remark that

Hε = H1 − (1 − ε)[p(ρ)] [ρ] .

This implies that H−1
ε (0) = H−1

1 ((1 − ε)[p(ρ)][ρ]) and then that the zeros of Hε tend to θ�

as ε tends to 0. �

Appendix E: Proof of Proposition 6 (Study of the Integral Curves of the Right
Eigenvectors)

Proof 1. We easily check that θ ′(ρ) = ∓√
εp′(ρ)/ρ, leading to the result.
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2. For a fixed ρ, the quantity

θε = (
iε
±
)−1

(ρ) = θ� ∓ √
ε

(∫ ρ

ρ�

√
εp′(u)

u
du

)

converges to θ� as ε goes to 0. For a fixed θ , the quantity
√

ε(
∫ ρε

ρ�

√
εp′(u)

u
du) = θ − θ�

is a constant. So as ε tends to 0, the integral term has to tend to +∞, which implies the
convergence of ρε = iε+(θ) to ρ∗. Besides, the function inside the integral behaves like

O(
√

ε(ρ∗ − u)− γ+1
2 ) when ρ → ρ∗. This leads to a diverging integral for γ > 1. Then the

integral behaves like O(
√

ε(ρ∗ − ρε
d)

− γ−1
2 ) and thus we get ρ∗ − iε±(θ) = O(ε

1
γ−1 ).

3. Let ε′ > 0 and ρ < ρε′
r . From the rarefaction curve equation (34), (iε±)−1(ρ) satisfies

∣
∣(iε

±
)−1

(ρ) − θr

∣
∣ ≤

∫ ρε
r

0

√
εp′(u)

u
du = √

ε

∫ ρε
r

0

γ u
γ−2

2 ρ∗γ+1

(ρ∗ − u)
γ+1

2

du.

Assuming that the limit of εp(ρε
r ) is finite, we get ρ∗ − ρε

r = O(ε
1
γ ). Thus, the function

inside the integral behaves like
√

ε(ρ∗ − u)− γ+1
2 when ρ → ρ∗. This leads to a diverging

integral for γ > 1, and then the integral behaves like O(
√

ε(ρ∗ − ρε
r )

− γ−1
2 ) and thus like

O(ε
1

2γ ). �

Appendix F: Proofs of Theorem 1 and Proposition 8 (Solutions of the Riemann
Problem for ε > 0)

F.1 Proof of Theorem 1

Proof Let (ρ�, θ�) and (ρr , θr ) be left and right states respectively and let us suppose that the
intersection of the 1-forward wave curve W

f,ε
− issued from the left state and the 2-backward

wave curve W
b,ε
+ issued from the right state reduces to one point (ρ̃, θ̃ ) (in all the proof, the

1-wave will be implicitly relative to the left state while the 2-wave curve will be implicitly
relative to the right state). To find where the intersection on the curves is located, the main
arguments will be the monotony of the wave curves given by Propositions 5 and 6 (indepen-
dently of the location of the states in the (ρ, θ)-plane) and their convergence speed to their
asymptotic limit. The wave curves will be considered as functions of θ in their domain of
definition:

wε
− =

{
iε− for θ ∈ [(iε−)−1(0), θ�],
hε− for θ ∈ [θ�,π [, wε

+ =
{

hε+ for θ ∈ [0, θr ],
iε+ for θ ∈ [θr , (i

ε+)−1(0)[,
where w− is an increasing function and w+ is a decreasing function. The functions h±
and i± are respectively defined in Propositions 5 and 6. Let us examine the different cases
suggested by the theorem successively: θ� greater or lower or equal to θr . For the reader’s
convenience, the corresponding geometric configurations of the wave curves are illustrated
in Fig. 12.

Case θ� > θr (Fig. 12, (a)). From Proposition 6, (iε−)−1(0) (resp. (iε+)−1(0)) tends to θ�

(resp. θr ) as ε goes to zero (and the third point of the same proposition asserts that it is
still the case when ρr tends to ρ∗). So, assuming that there exists α such that (iα−)−1(0) <



Congestion in a Macroscopic Model of Self-driven Particles Modeling 119

Fig. 12 Schematics of the intersections of the wave curves (proof of Theorem 1). Only the parts which meet
are represented

(iε+)−1(0), there exists β < α such that θr < (i
β
−)−1(0) = (i

β
+)−1(0) < θ�. So, since the do-

mains of definition of w− and w+ are respectively [(iβ
−)−1(0),π[ and ]0, (i

β
+)−1(0)], the

only intersection point of w
β
+ and w

β
− is the intersection of the 1 and 2-rarefaction curves at

(i
β
+)−1(0). As ε decreases, the intersection point disappears since the domains of definition

are separated. However, the integral curves meet the {ρ = 0} axis at the states (0, iε−(0)),
(0, iε+(0)) and these states are connected by vacuum.

Case θ� < θr . We suppose that ρ� is lower than ρr . For all ε, the increasing 1-shock curve
issued from the left state divides the domain [ρ�,ρ

∗] × [θ�,2π] (to which the right state be-
longs) in two parts: the left domain where the right state is on the left side of the 1-Hugoniot
curve issued from the left state (ρε

r < hε−(θε
r )) and the right domain where the right state is

on the right side of the 1-Hugoniot curve issued from the left state (ρε
r > hε−(θε

r )).

– Assume that for all ε the right state is on the right side of the 1-shock curve (Fig. 12, (b)).
We consider wε− − wε+ on the interval [(iε−)−1(0), (iε+)−1(0)], which is the intersection of
the domains of definition of wε− and wε+. The function wε− − wε+ is increasing. We have
(wε− − wε+)((iε−)−1(0)) = −(w+)((i−)−1(0)) < 0 and (wε− − wε+)(θr ) = hε−(θr ) − ρr > 0.
So the only zero of wε− − wε+ is in the interval [(iε−)−1(0), θr ]. So the intersection point of
the two wave curves is the intersection of the 1-shock curve and the 2-rarefaction curve.
This corresponds to the second subcase of the third case of the theorem. Note that the
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limit of the 1-shock curve (Proposition 5) implies that the limit of this case should be
considered only if ρr tends to ρ∗.

– Assume that for all ε the right state is on the left side of the 1-shock curve (Fig. 12, (c)).
Since ρ� is lower than ρr , the left state is also on the left side of the 2-Hugoniot curve
issued from the right state: ρε

� < ρε
r = hε+(θε

r ) < hε+(θε
� ). We again consider the increasing

function wε− − wε+ on its domain of definition [(iε−)−1(0), (iε+)−1(0)]. This function is
negative at θ� and positive at θr . So the intersection point of the two wave curves is the
intersection of the two shock curves and ρ̃ > ρ�, ρr . This corresponds to the first subcase
of the third case of the theorem.

If ρ� is greater than ρr , the decreasing 2-shock curve issued from the right state divides the
domain [ρr, ρ

∗] × [0, θr ] and the same arguments as before lead to the result.
Case θ� = θr (Fig. 12, (d)). Assume that ρr < ρ�. We again consider the increasing

function wε− − wε+. It is positive at θ = θ� and negative for θ = (iε−)−1(0) < θ� (since
hε+((iε−)−1(0)) > ρr > 0). So it equals zero for a value θ < θr . So (ρ̃, θ̃ ) is the intersec-
tion of the 1-rarefaction curve and the 2-shock curve, which leads to the solution given in
the first case of the theorem. The case ρr > ρ� is similar. �

F.2 Proof of Proposition 8

Proof 1. Consider the domain where {ρ = ρ�}.
If the left state is connected to the intermediate state via a rarefaction wave, then this

rarefaction fan is contained between the speeds λε− = cos θ� − √
εp′(ρ�)ρ�| sin θ�| and λ̃ε− =

cos θ̃ −√
εp′(ρ̃)ρ̃| sin θ̃ |. Since λε− < cos θ�, the domain {ρ = ρ�} cannot contain the contact

wave with speed cos θ�.
If the left state is connected to the intermediate state via a shock wave, then we have

cos θ̃ < cos θ� and ρ� < ρ̃, which yields

s− = cos θ̃ + ρ�

(cos θ̃ − cos θ�)

ρ̃ − ρ�

< cos θ̃ .

So the domain {ρ = ρ�} cannot contain the contact wave with speed cos θ�.
So in both cases, the domain {ρ = ρ�} cannot contain the contact wave with speed cos θ�.

The same arguments show that the domain {ρ = ρr} cannot contain the contact wave with
speed cos θr .

Finally, we easily check that a contact wave with propagation speed cos θ̃ can occur
within the intermediate domain {ρ = ρ̃}. Indeed, if the intermediate state is connected to the
left state (resp. to the right state) via a rarefaction wave, then we have λ̃ε− < cos θ̃ < λ̃ε+ and
if the intermediate state is connected to the left state (resp. to the right state) via a shock
wave then s− < cos θ̃ (resp. s+ > cos θ̃ ).

2. Like in the previous point, the contact wave can be located only in the intermediate
state {ρ = 0}. But the propagation speed is not unique: it can be all the intermediate speeds
between the two fans of rarefaction. �

Appendix G: Proofs of Lemma 1 and Propositions 9, 10 and 11 (Limits of Solutions
of the Riemann Problem)

We recall that the quantities indexed by − (resp. by +) are implicitly those related to the left
state (resp. the right state). The characteristic speeds related to the intermediate state will be
denoted by λ̃ε±.
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G.1 Proof of Proposition 9

Proof (a) Let us suppose that ρ� < ρr (the opposite case is similar). According to Theorem 1
and Proposition 6, the intermediate state angle θ̃ ε tends to θ� (since ρ̃ε belongs to the interval
]ρ�,ρr [ for each ε). In addition, it is easy to check that the two speeds λ̃ε+ and λ+ tend to
cos θr as ε tends to 0. So the rarefaction wave turns into a contact wave with speed cos θr .
As regards the shock wave, its speed is given by

sε = ρ̃ε cos θ̃ ε − ρ� cos θ�

ρ̃ε − ρ�

= cos θ� + ρ̃ε cos θ̃ ε − cos θ�

ρ̃ε − ρ�

, (63)

and tends to cos θ� as ε tends 0. Finally, the two waves coincide and make a single contact
wave.

(b) As in the first case, it is easy to check that the two rarefaction waves (cf. Theorem 1)
turn into contact waves with speeds respectively equal to cos θr and cos θ�.

(c) According to Proposition 5, hε−(ρε
r ) tends to θ� < θr . So, Theorem 1 implies that we

are looking for the limit of the intersection point of the two shock curves issued from the
left and the right states. These intermediate states (ρ̃ε, θ̃ ε) are the solutions of the non-linear
system

Hε(ρ�, θ�, ρ̃
ε, θ̃ ε) = [�(cos θ) + εp(ρ)]� [ρ]� − [�(cos θ)]� [ρ cos θ ]� = 0, (64)

Hε(ρ̃
ε, θ̃ ε, ρr , θr ) = [�(cos θ) + εp(ρ)]r [ρ]r − [�(cos θ)]r [ρ cos θ ]r = 0, (65)

ρ̃ε ≥ max(ρ�, ρr), θ̃ ε ∈ ]θ�, θr [ . (66)

From Proposition 5, for all θ ∈ ]θ�, θr [, the largest zero of the function ρ → Hε(ρ�, θ�, ρ, θ)

tends to ρ∗ as ε → 0. Indeed, if ρ̃ε does not tend to ρ∗, θ̃ ε simultaneously tend to θ� and
to θr (which is different from θ�), which is absurd. Therefore, ρ̃ε increases and tends to ρ∗.
Besides, from (64), εp(ρ̃ε) is bounded as ε tends to 0 (because θ̃ ε is bounded too) and we
deduce that εp(ρ̃ε) converges to a non-zero value p̄. Finally, we can easily check that the
system given in Proposition 9 is equivalent to the limit of system (64)–(65)–(66). �

G.2 Proof of Lemma 1

Proof Suppose that λ̃+ = lim λ̃ε+ is finite. Since εp(ρε
r ) → p̄r > 0, then εp′(ρε

r ) → +∞ and
consequently λ+ → +∞. The limit rarefaction wave has a fan for speeds s belonging to
]̃λ+,+∞[. The 2-rarefaction wave satisfies, for all s ∈]̃λ+,+∞[,

s = λ+(ρ(s), θ(s)) = cos(θ(s)) + √
εp′(ρ(s))ρ(s)| sin(θ(s))|.

So, for a fixed s, ρ(s) → ρ∗ as ε → 0 and we have (ρ∗ − ρ(s)) = O(ε
1

γ+1 ). Thus, εp(ρ(s))

(= O(ε
1− γ

γ+1 )) → 0 as ε → 0. So the rarefaction wave tends to the combination of a shock
wave between the states (ρ̃, θr ,0) and (ρ∗, θr ,0) with speed λ̃+ and a declustering wave.

If ρ̃ < ρ∗, then λ̃+ equals 0 and the previous arguments apply. Let us look at the case
ρ̃ = ρ∗. If λ̃+ is finite, then in the previous conclusion the shock wave disappears since the
two states on both sides of the shock wave are equal. And it confirms that ¯̄p = lim εp(ρ̃ε)

equals zero. If λ̃+ is infinite like limλε+, then the rarefaction wave turns into a shock wave
with an infinite speed between the states (ρ∗, θr , p̄�) and (ρ∗, θr , p̄r ). �
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G.3 Proof of Proposition 10

Proof (a) The intermediate state is here the intersection of the 2-rarefaction curve and the
1-shock curve. The intersection state exists for all ε by the monotony of the two curves (cf.
Propositions 5 and 6). Let us note that there is no reason to have a finite limit of λ̃ε since the
intermediate state can tend to ρ∗. So let us consider several cases:

Case (i) ρ̃ε → ρ�. In this case, the 1-shock disappears and the solution is given by
Lemma 1.

Case (ii) ρ̃ε → ρ̃ ∈ ]ρ�,ρ
∗[. In this case, it is easy to check that the 1-shock becomes a

1-contact and the limit of the 2-rarefaction is given by Lemma 1.
Case (iii) ρ̃ε → ρ∗. Now let us look at the limit of εp(ρ̃ε). (ρ̃ε, θ̃ ε) satisfies (64). The

terms [ρ cos θ ] and [ρ] are bounded and cos θ̃ tends to cos θr (cf. third point of Proposi-
tion 6), so taking the limit ε → 0 in (64), we get

[εp(ρ)]� [ρ]� → 0.

Thus εp(ρ̃ε) tends to 0 (since [ρ]� does not tend to 0). Finally Lemma 1 applies and we
conclude that the 2-rarefaction tends to a declustering wave. The shock speed, given by
(63), tends to cos θ� = cos θr . So the 1-shock tends to a contact discontinuity.

(b) The limit of the 2-rarefaction is given by Lemma 1 (with ρ̃ε = 0 and λ+ = cos θr ).
The 1-rarefaction wave turns into a contact wave as before.

(c) We first consider the case where the intermediate state is the intersection point of two
shock curves (for all ε, hε−(θε

r ) > ρε
r ): by the monotony of these curves, ρ̃ε is larger than ρε

r

and so tends to ρ∗ too. Besides, the intermediate state (ρ̃ε, θ̃ ε) satisfies the system (64)–(66),
which implies that εp(ρ̃ε) converges to a value denoted ¯̄p. By taking the limit ε → 0 in (65),
we obtain

[�(cos θ)]r [cos θ ]r = 0

(since θ̃ is bounded and [ρ]r tends to 0), which implies that θ̃ equals θr . Finally, if the limit
[εp(ρ)]r is non zero, the propagation speed is infinite (easily deduced from (65)) and if it is
zero, there is no discontinuity.

Consider now the case where the intermediate state is the intersection of the 1-shock
curve issued from the left state and the 2-rarefaction curve issued from the right state (for
all ε, hε−(θε

r ) < ρε
r ). From Proposition 6 (point 3), the intermediate angle θ̃ ε tends to θr .

Besides, thanks to Proposition 5, the intermediate density ρ̃ε tends to ρ∗. From (33), εp(ρ̃ε)

converges to a value denoted by ¯̄p which is given by the limit Rankine Hugoniot relation.
So the limit intermediate state is (ρ∗, θr , ¯̄p). Finally Lemma 1 applies: the rarefaction turns
into a shock. �

G.4 Proof of Proposition 11

Proof (a) Since the intermediate density ρ̃ε is comprised between the left and right ones:
ρε

� < ρ̃ε < ρε
r (cf. Theorem 1) and since ρε

� , ρε
r → ρ∗, we also have ρ̃ε → ρ∗. For the

intermediate angle θ̃ ε , the previous proof shows that it tends to θr . Let us note that the 2-
rarefaction wave tends to a contact wave (because λε

r+, λ̃ε+ → +∞). Let s be the limit of the
1-shock speed and let us note that s is lower than cos θ�. Like in Proposition 10, subcase (c),
the intermediate pressure is equal to

¯̄p = p̄� + lim
[ρ cos θ ]� [�]�

[ρ]�
.
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Now let us look at the limit of the shock speed. For finite ε, the shock speed is given by

(63). Since εp(ρε
r ) → p̄r > 0, we have ε

1
γ = O(ρ∗ − ρε

r ) and then ε
1
γ = O(ρ∗ − ρ̃ε). On

the other hand, from Lemma 6 we have (iε)−1(ρ) − θr = O(ε
1

2γ ) and therefore we get

cos θ̃ ε − cos θ� = −2 sin

(
θ̃ ε + θ�

2

)

sin

(
θ̃ ε − θ�

2

)

= O(ε
1

2γ ).

Thus, we easily get that sε tends to cos θ� and then that the pressure ¯̄p equals p̄�.
(b) Here the proof is similar to the case where only one state converges to the congested

state (see proof of Proposition 10).
(c) Consider the case where the solution is the limit of two shock waves. By the monotony

of the shock curves, the intermediate density is larger than the right and left ones (cf. Theo-
rem 1) and so it tends to the congested density too.

Suppose that the intermediate angle is not equal to θ�. The limit 1-shock speed, given by
(63), is −∞. Besides, (64) implies that εp(ρ̃ε) tends to +∞. Then [εp(ρ)]r tends to +∞
and from (65), we deduce that the 2-shock speed has to tend to +∞ too. If the intermediate
angle tends to θ�, then it does not tend to θr and the same arguments apply. From (64)–(65),
the quantities [εp(ρ)]�[ρ]� and [εp(ρ)]r [ρ]r are bounded and the limit of their quotient is

[εp(ρ)]r [ρ]r
[εp(ρ)]�[ρ]� −→

ε→0

[�(cos θ)]r [cos θ ]r
[�(cos θ)]�[cos θ ]� .

Besides, it is easily checked that

[εp(ρ)]r [ρ]r
[εp(ρ)]�[ρ]� ∼

ε→0

ρ̃ − ρr

ρ̃ − ρ�

∼
ε→0

ρ∗ − ρr

ρ∗ − ρ�

,

where the last equivalence results from the fact that (ρ∗ − ρ̃) = o(ε
1
γ ) since εp(ρ̃) → +∞

and (ρ∗ − ρ�,r ) = O(ε
1
γ ), ε

1
γ = O(ρ∗ − ρ�,r ). Finally, we have

ρ∗ − ρr

ρ∗ − ρ�

=
(

εp(ρ�)

εp(ρr)

) 1
γ

→
(

p̄�

p̄r

) 1
γ

.

Consider now the limit of a solution consisting of one shock wave and one rarefaction
wave. From Lemma 1, the intermediate angle θ̃ ε tends to θr and from (64), [εp(ρ̃]� [ρ]�
tends to a non-zero value: ρ∗ [�(cos θ)]� [cos θ ]�. Because [ρ]� tends to 0, εp(ρ̃ε) has to
tend to +∞, which is absurd since εp(ρ̃ε) < εp(ρε

r ). �
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